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ANALYSIS OF LARGE-SCALE SECONDARY
DATA IN HIGHER EDUCATION RESEARCH:
Potential Perils Associated with
Complex Sampling Designs

Scott L. Thomas and Ronald H. Heck

:::: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
Most large-scale secondary data sets used in higher education research (e.g., NP-
SAS or BPS) are constructed using complex survey sample designs where the popu-
lation of interest is stratified on a number of dimensions and oversampled within
certain of these strata. Moreover, these complex sample designs often cluster lower
level units (e.g., students) within higher level units (e.g., colleges) to achieve efficien-
cies in the sampling process. Ignoring oversampling (unequal probability of selection)
in complex survey designs presents problems when trying to make inferences—data
from these designs are, in their raw form, admittedly nonrepresentative of the popula-
tion to which they are designed to generalize. Ignoring the clustering of observations
in these sampling designs presents a second set of problems when making infer-
ences about variability in the population and testing hypotheses and usually leads to
an increased likelihood of committing Type I errors (declaring something as an effect
when in fact it is not). This article presents an extended example using complex
sample survey data to demonstrate how researchers can address problems associ-
ated with oversampling and clustering of observations in these designs.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
KEY WORDS: survey analysis; complex sample; clustered data.

INTRODUCTION

Research in higher education has benefited tremendously from the increased
availability of quality secondary data sets germane to our varied interests. Aca-
demic researchers now have available a host of nationally representative data
with which they can systematically examine outcomes such as student college
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going, persistence, postgraduation labor force participation, faculty pay and
workload equity, and faculty entrepreneurialism, to name only a few. Like their
academic counterparts, institutional researchers are increasingly using these data
to make comparisons to students, administrators, and faculty at their institutions
as well as comparisons among institutions themselves.

Perhaps the most widely used secondary data sources in higher education
research are those overseen by the U.S. Department of Education through the
National Center for Education Statistics (NCES). NCES produces numerous sur-
veys touching on almost every facet of higher education. These surveys are both
longitudinal and cross-sectional in nature and include familiar names such as
High School and Beyond (HS&B), the National Postsecondary Student Aid
Study (NPSAS), the National Study of Postsecondary Faculty (NSOPF), the
Beginning Postsecondary Student Longitudinal Study (BPS), the Baccalaureate
and Beyond Study (B&B), and the Integrated Postsecondary Education Data
System (IPEDS).

The relatively high quality data associated with these and other surveys are
enticing to researchers and graduate students alike. A recent review of national
secondary data resources informing higher education interests identified 65 con-
ference presentations, 30 published reports, and 91 refereed journal articles that
used one or more of the national secondary data sources reviewed (Dey, et al.,
1997). In addition to the analyses identified in that review, anecdotal evidence
exists that such data are widely used as working examples in graduate-level
applied statistics courses taught in schools of education throughout the United
States.

The ease of availability of these data combined with well-publicized financial
incentives for their use and increasingly sophisticated technology that permits
powerful analysis of large data sets has led many to rightfully view such data
as an exciting research opportunity. But, while we have evolved significantly
from the days of punch cards, 9–track tape downloads, and complicated main-
frame programming, a number of important statistical issues associated with
analyzing secondary survey data remain. In fact, it would seem that the fruits
of these technological advances have in some instances overshadowed a number
of basic analytical issues that can confound the interpretation of findings based
on many of these large-scale nationally representative data sets. As the richness
of such data has great appeal to policymakers and analysts, we argue that igno-
rance of some of the more fundamental analytical issues associated with the use
of these data may often yield results that could mistakenly lead us down the
wrong policy paths.

This article addresses two separate but related, longstanding analytical issues
associated with the use of data collected through complex sampling designs—
designs that are most often used in the large-scale data collection efforts of
government agencies. These issues can be classified into two broad areas: (1)
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representativeness of the samples analyzed, and (2) the correct assessment of
population variances that form the basis for the identification of statistical ef-
fects and hypothesis testing. In this article, we address these problems in an
applied, relatively nontechnical manner in an effort to illuminate the important,
but not so obvious, problems associated with the analysis of many large-scale
secondary data sets. The main points are demonstrated using a subsample of
data from NCES’s Baccalaureate & Beyond survey (B&B:93/94), which col-
lected information on over 11,000 graduates receiving their first baccalaureate
degree in the 1992/1993 academic year. The survey was designed to be a nation-
ally representative sample of baccalaureate recipients in the United States.

PROBLEMS WITH LARGE-SCALE SAMPLE SURVEY DATA

There are two basic data collection problems encountered when collecting
large-scale sample survey data. First, with many large-scale surveys, there exists
no simple sampling frame (i.e., a single list from which we can randomly choose
our sample members) for our target population. Second, even if a sampling
frame existed, we would most likely want to make sure that we had a sufficient
number of respondents with certain characteristics (e.g., certain racial/ethnic
groups, those at different types of postsecondary institutions). Knowing that
many are interested in the analysis of certain segments of the population, a
simple random sample (SRS)—where one randomly chooses a certain number
of respondents for a sample—might not yield adequate numbers of observations
in the segments of interest.

Both of these data collection problems are addressed by stratified multistage
cluster sampling strategies. Such strategies usually involve the oversampling
(i.e., sampling certain elements with a higher probability of selection than is the
case for others in the sample) of those individuals with certain characteristics
that need to be included in sufficient numbers for purposes of analysis. A strati-
fied multistage cluster sample is achieved by first stratifying the population at
higher levels. For example, since no comprehensive list of 4-year college stu-
dents exists, we might compile a list of 4-year institutions that the students we
are interested in attend; such lists are readily available. From this list we can
then draw a sample of institutions within each of the strata we created (e.g.,
public; private). From the institutions sampled, we then request lists of students
meeting the criteria related to our research interests. The lists of students from
each institution can then be stratified into subgroups from which we could draw
samples. In this example we have used a two-stage (institutions and students)
stratified cluster sample. We could, of course, at either stage oversample within
any particular strata. For example, we might wish to ensure that we had a suffi-
cient number of Historically Black Colleges and Universities (HBCUs) in our
sample from which we could make generalizations to the population of HBCUs.
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Similarly, we might also want to ensure that our final sample had a sufficient
number of students from various racial or ethnic backgrounds. Both objectives
can be achieved by stratifying the sampling frame at the appropriate level and
then choosing a set number or proportion of schools or students in each stratum
(HBCU/non HBCU at the institution stage and minority/nonminority at the stu-
dent stage). Most NCES survey samples are stratified on many different vari-
ables at each level.

While such complex sampling strategies are effective in getting the right
numbers of the right types of observations in a sample, they also yield a sample
that in its raw form is usually a severe distortion of the population from which
it was drawn (i.e., in the example above, a disproportionate number of HBCUs
and racial minorities). Hence, providing more weight to these types of institu-
tions and students than is present in the overall population will bias any subse-
quent results in known and perhaps unknown directions, depending on the type
of analysis and outcome of interest.

A second artifact of complex sampling strategies results from the clustered
nature of the lower stages (students in this example). If the clusters of students
are internally homogeneous—that is, if students within colleges are more similar
than students across colleges—then the estimates of overall variance on mea-
sures will be lower than would be the case if a simple random sampling strategy
were used (Muthen and Satorra, 1995). Simple random sampling requires the
researcher to assume that all observations are independent (i.e., that individuals
within similar subunits and institutions share no common characteristics or per-
ceptions). Consequently, as similarities among individuals within groups be-
come more pronounced in the sample, estimates of variances and standard errors
derived from such data become more biased (Muthen and Satorra, 1995). This
internal homogeneity of clusters is measured by calculating an intracluster corre-
lation (ICC) coefficient (this calculation is discussed in a subsequent section).
The degree of bias in estimating variances in data collected through cluster
samples is a function of the ICC present in the data—the greater the ICC, the
larger the resulting bias (Hox, 1998; Muthen and Satorra, 1995).

Commonly used statistical packages such as SAS and SPSS treat any data set
as though it were constructed through a simple random sample (i.e., single-stage
with equal probability of selection), thus ignoring the complexities associated
with data collected through multistage cluster samples. Therein lies the problem
we address in this article. We emphasize that researchers should be mindful of
the structure of data assembled through complex sampling techniques (e.g., the
presence of oversampling and the degree of homogeneity within clusters) and
consider appropriate corrective strategies in terms of the analysis of these data.
There are two classes of approaches that can be used to address analytical issues
associated with the use of data from complex samples: designed-based ap-
proaches and model-based approaches (de Leeuw and Kreft, 1995; Muthen and
Satorra, 1995).
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In a design-based approach, the approach we present in this article, a single-
level analysis can be maintained after adjustments are made for sample design
effects including unequal subject selection probabilities and nonindependence
of observations resulting from clustered designs (Muthen and Satorra, 1995).
When using data from complex samples, the equal weighting of observations,
which is appropriate with data collected through simple random samples, will
bias the model’s parameter estimates if there are certain subpopulations that
have been oversampled. Moreover, the analytic methods appropriate for data
collected from simple random samples ignore the similarities among individuals
in the same institution (i.e., clustering effects). As we will show in this article,
adjustments for these problems can be readily made. The analyst using such a
design-based approach is conceptually constrained to modeling at a single level
of analysis (i.e., students or institutions, but not students and institutions). This
single-level analytic approach is consistent with the majority of techniques in-
cluded in SAS or SPSS (e.g., simple descriptive analyses, multiple regression,
discriminant analysis).

In contrast, model-based approaches (i.e., multilevel regression) directly in-
corporate the clustered sample design into the analytical models (Muthen and
Satorra, 1995). In this approach, for each individual, the total score on a depen-
dent variable is decomposed into an individual, or within-group, component and
a between-group component. The decomposition of variables from the sample
data into their component parts can be used to compute a within-groups covari-
ance matrix (i.e., the covariance matrix of the individual deviations from the
group means) and a between-groups covariance matrix (i.e., the covariance ma-
trix of the disaggregated group means). The variation at each level can then be
explained simultaneously with sets of predictors at each level of the data hierar-
chy (see Bryk and Raudenbush, 1992; Muthen, 1994; Muthen and Satorra, 1995;
and Heck and Thomas, 2000, for further discussion of this approach).

By definition, multilevel approaches take the clustered data structure into
account when producing estimates and thus obviate the need for further action
to deal with problems of variance estimation resulting from clustered data in
complex samples. For example, at the individual level, this is accomplished by
developing a pooled within-group covariance matrix instead of a conventional
covariance matrix based on the total number of individuals in the sample. This
equation corresponds to the conventional equation for the covariance matrix of
individual deviation scores, except the number of individuals in the sample mi-
nus the number of groups (n − g) is used in the denominator of the equation
instead of the usual n − 1 (see Muthen and Satorra, 1995, for further discussion).
This adjustment provides correct degrees of freedom for the individual-level
analysis where the assumption of independent observations is not met because
of clustering. Such model-based approaches, while effectively dealing with clus-
tered data, still require statistical adjustments for oversampling, however. The
multilevel approach is the correct one in cases where the theoretical model calls



522 THOMAS AND HECK

for data from more than one level of analysis to be analyzed (e.g., combining
data from students and colleges in the same model). These approaches, however,
also require specialty software packages to conduct the multilevel analysis (e.g.,
HLM, MLWin, and MPlus).

DESIGNED-BASED REMEDIES

Weighting for Oversampling

In situations where the researcher wishes to maintain a single-level analysis,
most standard software packages can be manipulated though the use of sample
weights to adjust for oversampling. Fortunately, most data sets from nationally
representative samples also include a weight or a set of weights to adjust for
unequal probabilities of selection in the sample design. Consider the B&B:93/
94 sampling strategy, which relied on a multistage cluster sample of colleges
and students with stratified samples and differential probabilities of selection at
each level (NCES, 1995).1 Institutions were first selected within geographic
strata and were then further stratified by control (e.g., public, private, not-for-
profit, etc.), and degree offering (e.g., 4-year nondoctorate granting, 4-year doc-
torate granting, etc.). Consequently, any estimates based on the raw unweighted
sample will be biased in the favor of students graduating from schools that were
oversampled within particular strata.2

If we used these data to learn something about the education-related indebted-
ness of baccalaureate recipients, our newfound empirical knowledge would be
skewed by the disproportionate representation of graduates from particular types
of institutions in particular regions. Consider the descriptive results of such an
analysis that appear in Table 1. The estimates in this table are based on an
unweighted subsample of graduates in the B&B:93/94 sample that reported
holding education-related debt upon graduation. Because we have not weighted
the sample to account for oversampling (i.e., the unequal probability of selec-
tion) within and across strata, this subsample is not representative of the target
population—that is, the estimates are incorrect.

To make these data representative of the target population, we need to apply
sample weights to deemphasize the disproportionate contribution of those ele-
ments that were oversampled. Two types of sample weights are commonly used
in the analysis of survey data: raw (expansion) weights and relative weights. In
its most basic form, the raw weight is computed as the reciprocal of an observa-
tion’s probability of selection. Observations selected with a higher probability
(i.e., oversampled) will have a smaller raw weight value. Summing the raw
weight across all observations yields the population N:

∑
n

j=1

wj = N
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While statistical packages vary in the way they use weights to calculate cer-
tain statistics, most calculate the weighted mean as follows:

x̄ = ∑
n

j=1

wjxj / ∑ wj

or as the sum of the products of each observation’s raw weight and value for x,
divided by the sum of the raw weight, w. Notice that the sum of the raw weight
(Σ wj), or the size of the target population, now becomes the effective sample
size in this calculation. This is an important point that will be considered subse-
quently. Weights are easily applied in SPSS using the WEIGHT BY command
or in SAS using the WEIGHT subcommand.3

As with most large-scale government-related surveys, the B&B:93/94 survey
includes a set of raw weights for the analyst to choose from. The weights accom-
panying most data sets of this type have been adjusted to account also for nonre-
sponse and therefore are considerably more refined than the simple reciprocal
of the probability of selection (details of such poststratification refinements are
found in accompanying methodological reports). Choice of the proper raw
weight depends on the purpose of the analysis (e.g., longitudinal vs. cross-sec-
tional). In the case of the B&B:93/94 example used here, we are interested in
estimating debt upon graduation—a cross-sectional analysis. The methodology
reports that usually accompany these surveys will generally spell out the specific
purpose of each of the weights included in the data file.

Now consider the weighted estimates in Table 2. These estimates have been
weighted using the raw cross-sectional weight provided by NCES, BNBWT1.
The columns headed “% +/−” represent the percentage increase or decrease (i.e.,
bias) of each estimate relative to the unweighted estimates shown in Table 1.

In addition to noting the change in the point estimates of the means and SEs,
attention should also be paid to the sum of the weights. As explained above,
this value will be equal to the size of the target population. These weighted

TABLE 2. Raw Weighted Estimates Based on SRS Assumption

Mean SE % 95% CI 95% CI Σ Weights
Variable N Mean % +/− SE +/− Lower Upper (effective N)

DEBT1000 4285 10.083 −1.97 0.014 −90.50 10.055 10.111 474718
FEMALE 4285 0.540 −3.92 0.001 −90.50 0.538 0.541 474718
NONWHITE 4285 0.154 +3.64 0.001 −90.50 0.153 0.155 474718
BATIME 4285 82.546 +4.03 0.091 −90.50 82.368 82.724 474718
TOTCOST 4285 120.098 −2.63 0.102 −90.50 119.898 120.299 474718
FTFY 4285 0.472 −6.14 0.001 −90.50 0.471 0.473 474718
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point estimates of the means are presumed to be correct for the parameters of
interest. Notice, however, that the estimated standard errors reported in Table 2
are dramatically smaller (90.50 percent smaller) than those reported in Table 1.
Some statistical packages, such as SPSS, calculate this value using the sum of
the weights (N = 474,718) as the effective sample size.4 In contrast, SAS version
8 uses the size of the actual sample n in the calculation of the standard error,
regardless of the weight applied, and is therefore not sensitive to this problem.5

A consequence of using the raw weights supplied with most complex survey
data is that, when calculating SE estimates, many statistical packages (SPSS
included) are fooled into believing that the sample size is much larger than it
really is. While both the raw and relative weights yield the same point estimates
for the mean in all software packages, in some packages analyses using the raw
weight result in an effective sample size that is the same as the population N.
This can seriously compromise calculations that are sample size specific, such
as variances and covariances, and leads to incorrect results. The effects of this
become an especially critical point when one wishes to test hypotheses using
weighted data—most every difference or coefficient becomes significant as a
result when using statistical packages that are blind to the actual sample size.

This difficulty can be avoided in any statistical package, however, with a
simple correction to the raw weight. In order to preserve the effective sample
size while still adjusting for oversampling, we create a relative weight by divid-
ing the raw weight by its mean,

wi / w̄

where w̄ = Σ wi / n. Consider the new values in Table 3 obtained using the
relative weight.

By using the relative weight, the estimates of the means in Table 3 have been
corrected for oversampling in the design and can be considered correct (i.e., the
same as those found in Table 2). Similarly, the relative weighted SE estimates

TABLE 3. Relative Weighted Estimates Based on SRS Assumption

95% CI 95% CI Σ Weights
Variable N Mean SE Lower Upper (effective N)

DEBT1000 4285 10.083 0.150 9.789 10.377 4285
FEMALE 4285 0.540 0.008 0.525 0.554 4285
NONWHITE 4285 0.154 0.006 0.143 0.165 4285
BATIME 4285 82.546 0.956 80.672 84.419 4285
TOTCOST 4285 120.098 1.076 117.989 122.208 4285
FTFY 4285 0.472 0.008 0.457 0.487 4285
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in Table 3 are now correct, assuming that a simple random sample was used to
collect the data. Put another way, in the case where a simple random sample
was used, hypothesis tests using these relative weighted values would yield
accurate results. We know, however, that this assumption is not valid when
using data from the B&B:93/94 survey.

DESIGN EFFECTS

To this point in this article, we have focused on issues related to oversampling
(i.e., the unequal probability of selection). We know, however, that a multistage
cluster sample was used in the sample design of B&B:93/94 and that, as argued
previously, there may exist homogeneity within the clusters (colleges) that
would lead to underestimated SE values reported in Table 3. We now turn our
attention to the impact of clustering in complex samples. The discussion
throughout the remainder of the article assumes that problems outlined in the
previous section relating to oversampling have been addressed by applying a
relative weight in the analysis.

As a rule of thumb, the more similar are observations within their respective
clusters the greater will be the underestimation of the true variability in the
population (Hox, 1998). To examine the degree to which there exists intracluster
homogeneity, we can examine the variance components of our outcome vari-
able. The relative homogeneity of the clusters can be determined by partitioning
the variance in the outcome measure into its within-cluster and between-cluster
components. The partitioning is accomplished using the equivalent of a one-
way ANOVA with random effects where the sample cluster variable (or primary
sampling unit—institutions), SCHLID, is treated as a random factor with 583
levels (i.e., the number of institutions in the first-stage sample). From these
components we can calculate an ICC coefficient by:

Var(between clusters) / Var(between clusters + within clusters).

The ICC should be zero when the data are independent; thus, its magnitude
depends on characteristics of the variable measured and the attributes of the
groups. In the presence of ICC, the impact of cluster sampling on the operating
alpha level can be substantial. However, in the absence of substantial ICC (e.g.,
where the ICC is somewhat less than .05), there is little need to adjust for the
design effect associated with this clustering. In such cases where the observa-
tions are nearly independent, traditional multiple regression analysis using ap-
propriately weighted data will provide accurate estimates of the parameters and
standard errors.

Partitioned variance coefficients can be obtained for the relative weighted
data in SAS using the PROC MIXED routine or in SPSS using the VARCOMP



527ANALYSIS OF LARGE-SCALE SECONDARY DATA

routine.6 Each package offers several methods for estimating these components.
Efficient estimation of the components requires that random errors are indepen-
dent, normally distributed, and have constant variance (Bryk and Raudenbush,
1992). These assumptions are unrealistic, however, given that we are using a
random coefficients model to estimate the intercepts (means) across the sample
of first-stage units (colleges); such a model requires a more complex error struc-
ture. For this reason, we recommend using the maximum likelihood (i.e., full
information maximum likelihood, restricted maximum likelihood) method of
estimating these components (see Bryk and Raudenbush [1992] or Dempster,
Laird, and Rubin [1977] for a complete consideration of these issues). Using
the relative weighted data and restricted maximum-likelihood estimation (which
uses the appropriate degrees of freedom and yields more precise estimates of
the level-2 variance components when the number of units in the study may be
small), SPSS provides the estimates shown in Table 4.

From these variance components, the ICC can be calculated as 18.669 /
(18.669 + 80.783) = .188. The ICC of .188 (substantially above .05) requires the
analyst to further consider the sample design effect.7

The choice of how to deal with effects of the internal homogeneity of the
clusters depends, in part, on the aims of the research. A research question that
involves modeling relationships from the level of the cluster as well as from
the individual requires a model-based or multilevel approach that disaggregates
individuals’ scores within their specific clusters. In contrast to disaggregated
approaches that rely on multilevel modeling techniques, as we have suggested,
aggregated, design-based approaches restrict the analyst to focusing on one level
of analysis to estimate a best overall model. Aggregated approaches to model
estimation treat the sample as though it were a single group and then, by a
variety of alternative procedures, adjust variances to account for homogeneity
within clusters. Note, for example, that the regression routines found in standard
statistical packages such as SPSS and SAS are aggregate approaches that do
not, on their own, account for intracluster homogeneity. Again, routines such as
these assume the data being analyzed were collected through a simple random
sample and neither require, nor allow, further information about stratification or
clustering in the sample design.

As we have argued, applying such aggregate simple random sample ap-

TABLE 4. Estimated Variance Components

Component Estimate

Var(SCHLID) 18.669
Var(Error) 80.783

Dependent Variable: DEBT1000 Method: Restricted Maximum Likelihood Estimation.
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proaches to data collected through complex sample designs biases estimated
variances to the degree that there exists homogeneity among the clusters in the
sample (Muthen and Satorra, 1995). If the analyst chooses to employ an aggre-
gate analytical strategy using data collected through a complex sample design,
then she or he must find a way to gauge and correct for potential bias in the
estimates.

There are a number of ways to get correct variance estimates in aggregate
(single-level) analyses. The most frequently used are Taylor expansion (linear-
ization),8 balanced repeated replication (BRR), and jack-knifing and bootstrap-
ping techniques (e.g., see Wolter, 1985, and Rust, 1985). These techniques are
used in specialty software packages that have been specifically designed to pro-
duce standard error estimates for data from complex samples (e.g., SUDAAN,
WesVarPC, PCCARP). However, given the specialized nature of such packages,
the financial cost, difficulty of use, or some combination of these factors, many
analysts have been discouraged from incorporating them into their research ef-
forts.

Recent software developments at both SAS and SPSS, however, promise to
put more accessible complex sample tools within the reach of mainstream higher
education researchers.9 SAS version 8 includes two procedures and associated
documentation in this area: PROC SURVEYMEANS and PROC SURVEY-
REG. Both procedures allow the analyst to adjust standard error estimates for
sample design effects. The SAS procedures employ the Taylor expansion
method to estimate sampling errors of estimators based on complex sample
designs. This method obtains a linear approximation for the estimator and then
uses the variance estimate for this approximation to estimate the variance of the
estimate itself (Fuller, 1975; Woodruff, 1971). With knowledge of and access
to the sampling stratum variable and the cluster identification variable, which
are usually clearly identified in the user’s manuals for the data set, the analyst
can employ either of these procedures to produce correct standard error esti-
mates. Again, most secondary data sets from government agencies contain these
design variables.

Table 5 contains the results of a relative weighted analysis in which a 16-
category stratification variable (BNBSTRAT) and 583 category cluster variable
(SCHLID) were designated (both of these variables can be found on the data
file provided by NCES). Notice that the point estimates of the mean are consis-
tent with the previous weighted estimates and that the standard errors are signifi-
cantly larger than those reported in Tables 2 and 3. The inflation of the SE
estimates adjusts out the bias resulting from intracluster homogeneity.

The ratio of this larger complex sample SE (squared) to the original relative
weighted simple random sample SE (squared) defines what is known as the
design effect or DEFF (Kish, 1965):
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TABLE 5. Relative Weighted Estimates Based on Complex Sample Assumption*

Variable N Mean SE Σ Weights DEFF

DEBT1000 4285 10.083 0.209 4285 1.94
FEMALE 4285 0.540 0.011 4285 2.08
NONWHITE 4285 0.154 0.011 4285 4.15
BATIME 4285 82.546 1.842 4285 3.72
TOTCOST 4285 120.098 1.932 4285 3.22
FTFY 4285 0.472 0.012 4285 2.52

*SEs adjusted for 16 strata and 583 clusters.

DEFF =
SE

2
COMPLEX SAMPLE

SE
2
SRS

Both the DEFF and its square root or DEFT (also called the root design effect)
are useful for adjustments that can be made either prior to hypothesis testing or
after traditional hypothesis tests have been conducted. Most methodology re-
ports provide design effect values for key variables in the data set as well as an
overall mean value.

Once the design effect has been determined, ideally in terms of the outcome
variable, it is possible to adjust future analyses by this value to compensate for
underestimation of standard errors. Again, this is a critical adjustment in terms
of hypothesis testing. If standard errors are underestimated by not taking the
complex sample design into account, there exists a greater likelihood of finding
erroneously “significant” parameters in the model than the a priori established
alpha value indicates. For example, Barcikowski (1981) showed that the alpha
of a t test performed at alpha .05 is inflated to .11, with ICC = .20 and a cluster
size of 10. With a common group size of 25 and an ICC of .10, the operating
alpha level would be .29 for a test performed at the standard level of alpha = .05
(Hox, 1998). Obviously, not adjusting for the effects of clustering can produce
misleading results of parameter significance.

Consider a standard OLS regression model with total debt regressed on a set
of predictors. These results are presented in Table 6 and were calculated using
the relative weight but ignoring the complex sampling design. This output is
what would be produced by the standard regression routines using relative
weighted data in SAS or SPSS. Note the size of the standard error and the level
of significance of each of the parameters in the model. For example, there are
three predictor variables that are significant at alpha < .05 and one that is signifi-
cant at p < .10. From the analysis of variance components in the previous sec-
tion, we know that the outcome, total debt, has a fair degree of intracluster
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TABLE 6. Relative Weighted Regression Estimates Based on SRS Assumption:
Y = DEBT1000

Variable B SE T Prob(T)

INTERCEPT 7.174*** 0.390 18.39 <0.0001
FEMALE −0.523* 0.294 −1.78 0.0751
NONWHITE −0.096 0.405 −0.24 0.8127
BATIME2 −0.006** 0.002 −2.34 0.0195
TOTCOST 0.034*** 0.002 13.78 <0.0001
FTFY −0.766** 0.351 −2.18 0.0291

*p < .10, **p < .05, ***p < .01.

homogeneity (ICC = .188) and that this has most likely biased downward the
standard errors in Table 6, heightening the potential of committing Type I errors.
We should therefore take corrective action with this model.

CORRECTIVE STRATEGIES

Using sample weights corrects for oversampling but not for similarities
among individuals in clusters. There are at least four corrective alternatives that
can be considered to account for the effects of clustered samples (in order of
precision): (1) estimate the model using special software/procedures that ac-
count for the sample design, (2) adjust the estimated standard errors in regres-
sion upward as a function of a known DEFT value, (3) manipulate the effective
sample size by adjusting the relative weight downward as a function of a known
DEFF value, or (4) leave everything as is but evaluate each parameter in terms
of a more conservative critical alpha value (e.g., .01 or .001 instead of .05). It
should be stressed that alternative 1, using special software procedures, is by
far the most accurate and preferable.

Alternative 1: Use Specialized Software Packages or Routines
to Analyze the Data

Many specialty software packages (e.g., SUDAAN, WesVar, PCCARP) have
a regression function that allows the specification of linear models such as the
one reported in Table 6. These packages are often either expensive or very
difficult to use properly. As mentioned previously, mainstream statistical pack-
ages are now beginning to incorporate routines for analyzing complex survey
data. For example, the aforementioned SAS procedure, PROC SURVEYREG,
enables the development and testing of regression models under complex sam-
pling assumptions.10 Specifying the same stratification and cluster variables used
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to generate the results reported in Table 5, we used SAS SURVEYREG to
reproduce the regression model in Table 6. Note, in Table 7, that the slope
parameter estimates remain the same, while the standard error estimates are
considerably larger.

The larger standard error estimates translate into smaller t ratios and result in
substantive changes in our interpretation of the model’s effects. Ignoring the
complex sample design in the previous analysis (Table 6) led to the rejection of
the hypotheses (at α = .05) that βFTFY = 0 and (at α = .10) that βFEMALE = 0. Given
knowledge of the design effects (Table 7), we can see that such action based on
the results assuming a SRS reported in Table 6 would have led us to commit at
least one and possibly two Type I errors (i.e., false rejection of the null hypothe-
sis), depending on our choice of alpha. It is worth noting that, when treated as
a single-level model, these results are very close to those produced by multilevel
modeling packages such as HLM. Deviations between the two approaches at
this stage will most often result from the ability of most multilevel software
programs to adjust estimates not only for clustering but also for within-unit
reliabilities (see Heck and Thomas [2000] for a complete discussion of multi-
level estimates).

Alternative 2: Adjust Estimated Standard Errors by a Known DEFT
Value

While the previous approach is the most appropriate for the analysis of data
from complex samples, there exist a number of alternatives to approximate and
adjust for resulting biases. If the analyst does not have the luxury of estimating
the model directly in a complex sample environment, she or he can also adjust
the standard errors estimated under the simple random sample assumption (Ta-
ble 6). The standard errors in that model can be multiplied by the root mean

TABLE 7. Relative Weighted Regression Estimates Based on
Complex Sample Assumption: Y = DEBT1000

Variable B SE T Prob(T) DEFF

INTERCEPT 7.174*** 0.468 15.34 <0.0001 1.44
FEMALE −0.523 0.357 −1.47 0.1434 1.48
NONWHITE −0.096 0.521 −0.18 0.8540 1.66
BATIME −0.006** 0.003 −2.08 0.0383 1.27
TOTCOST 0.034*** 0.004 9.25 <0.0001 2.22
FTFY −0.766 0.482 −1.59 0.1122 1.88

*p < .10, **p < .05, ***p < .01.
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design effect or DEFT (i.e., which we can calculate as the square root of the
DEFF value for the outcome variable in Table 3).

DEFT =
SECOMPLEX SAMPLE

SESRS

= √DEFF

These DEFT adjusted standard errors can then be used to calculate new t ratios.
The trick in the absence of specialized software is getting an estimate of the
design effect itself. Fortunately, for most NCES surveys one can either: (1) use
NCES’s widely available public use Data Analysis System (DAS) to estimate
the design-adjusted standard error of any variable, or (2) resort to gross effects
found in tables at the end of each methodology report.11 However obtained, the
DEFF value can then be converted to a DEFT value by which we can adjust
each standard error in Table 6 and reevaluate the hypotheses.

Table 8 shows the results of such an adjustment using a DEFF value of 2.26.
To illustrate the preceding point about locating the appropriate DEFF value, we
took this from the B&B:93/94 methodology report (the corresponding DEFT
value is 1.48; NCES, 1996, p. 49). It is worth noting that these design effect
values reported by NCES are larger than those we reported in Table 3. There
are two reasons for these differences: (1) the NCES values are means across the
variables they consider in their report, and (2) the NCES values are computed
on the full sample and not the specific subsample we are using. Thus the analyst
should be aware of such potential differences.

Due in part to the larger DEFF value used, this approach yields more conser-
vative SE estimates in our example than those provided by SAS PROC SUR-
VEYREG. This technique, however, tends to yield more conservative estimates
even when using comparable DEFF values. Given that this is generally the case,
the analyst using this approach could consider evaluating each parameter at a
more liberal alpha level (e.g., .05 rather than .01).

TABLE 8. DEFT Adjusted, Relative Weighted SRS Regression Estimates:
Outcome = DEBT1000

Variable B SE T Prob(T)

INTERCEPT 7.174*** 0.573 12.51 <0.0001
FEMALE −0.523 0.434 −1.20 0.2400
NONWHITE −0.096 0.599 −0.16 0.8750
BATIME −0.006 0.004 −1.56 0.1209
TOTCOST 0.034*** 0.004 9.33 <0.0001
FTFY −0.766 0.520 −1.47 0.1201

*p < .10, **p < .05, ***p < .01.
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Alternative 3: Adjust the Relative Weight to Alter
the Effective Sample Size

Another alternative for computing more accurate standard errors is to alter the
effective sample size by adjusting the relative weight downward as a function of
the overall design effect. In some software packages, however, one cannot apply
this method (SAS version 8 for example, as mentioned in a previous section,
always treats the effective sample size as n regardless of how the sum of the
sample weight is manipulated). In packages such as SAS that do not allow this
approach, the analyst must rely on one of the other techniques for adjusting for
complex sample design effects. Assuming that the software package being used
does pay attention to the sum of the weight, as is the case with SPSS, adjust-
ments using this approach are made by multiplying the relative weight by the
reciprocal of the DEFF value and then reweighting the data with this DEFF
adjusted relative weight.

1

DEFF
* NORMWT

In the absence of substantially different variances across groups, the results
of this approach (summarized in Table 9) will be roughly equivalent to those
found by adjusting the individual parameters using the DEFT value in the previ-
ous example (see Table 8).

Alternative 4: Alter the Evaluation Criteria (alpha)

Finally, in the absence of an approximate DEFF value the analyst is still
obliged to acknowledge the potential bias associated with estimates produced
under SRS assumptions. This acknowledgment should be informed by the ICC

TABLE 9. DEFF Adjusted Weighted Regression Estimates Assuming SRS:
Y = DEBT1000

Variable B SE T Prob(T)

INTERCEPT 7.174*** .587 12.22 <0.0001
FEMALE −0.523 .442 −1.18 0.2369
NONWHITE −0.096 .609 −0.16 0.8749
BATIME −0.006 .004 −1.55 0.1207
TOTCOST 0.034*** .004 9.16 <0.0001
FTFY −0.766 .528 −1.45 0.1471

*p < .10, **p < .05, ***p < .01.
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of the outcome variable, which could be used as a guide in determining the
potential bias.12 The evaluation criterion can be adjusted according to the ICC—
where higher ICCs should lead to lower alpha values. Unfortunately, there exists
little empirical work assessing this relationship with large numbers of groups of
unequal size to provide a firm framework in which to consider such adjustments.

CONCLUSION

We have shown that special consideration needs to be given to sampling
issues when analyzing data collected through complex sample designs. These
sample designs are frequently used in large-scale data collection efforts aimed
at interests in postsecondary education. Two issues have been considered in this
article: weighting for unequal subject representation and standard error correc-
tions for intracluster correlations. From our analysis it is clear that failure to use
sample weights will always (in the absence of simple random sampling), to
some degree, lead to incorrect estimates of population parameters. Thus, a first
conclusion is that sample weights should always be used when analyzing data
from complex samples. Of the two weights considered in this article, the relative
weight (NORMWT) is the least problematic. While both the raw weight
(RAWWT) and the relative weight (NORMWT) produce the same point esti-
mates in descriptive analyses, some software packages are fooled into thinking
that the sum of the raw weight is the effective sample size. In packages that
succumb to this problem, this results in a gross understatement of the standard
error and leads to erroneous decisions when evaluating hypotheses. We therefore
recommend use of a relative weight for most analyses.

After appropriately weighting complex survey data, one may also need to
make adjustments to standard errors due to the clustered nature of the sample.
We recommend the use of complex sample survey software for estimating popu-
lation parameters and standard errors with this type of data. While standard
software packages can be used to provide approximately equivalent results as
those obtained from software especially designed for analyzing data from com-
plex samples, such approaches are only approximate and fail to capitalize on
the actual characteristics of the data set. Our analysis demonstrates that not
taking the sample design into account results in a potentially substantial over-
statement of the effects of parameters in predictive models. Thus, a second
conclusion is that ignoring complex sample designs leads to overly conservative
estimates of standard errors and the heightened potential for committing Type I
errors in hypothesis testing.

Finally, while we have purposefully dealt only with single-level formulations
(i.e., individual-level models), we stress that the choice of strategies for dealing
with complex sample data rests largely on the conceptualization of the study.
Cases in which one seeks to use data from the level of the cluster as well as the
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individual—for example, where one wants to understand the effects of organiza-
tional characteristics of colleges on students—usually require a multilevel statis-
tical treatment. While the weighting issues considered in this article apply to
multilevel models as well, such techniques deal with the effects of clustered
samples in different ways, both theoretically and practically.

Acknowledgments. We are indebted to Samuel Peng at the National Center for Educa-
tion Statistics and George Marcoulides for their helpful comments on an earlier draft.
Any errors and omissions are our own.

APPENDIX A. EXAMPLES OF SAS CODE USED

New variables are most easily computed in the initial DATA step in SAS. To
compute the relative weight (NORMWT) one first needs to find the mean value
of the raw weight (BNBWT1) for the sample being used.

PROC MEANS MEAN STDDEV STDERR N;
VAR BNBWT1;

RUN;

This yields a mean value of 110.7860. The relative weight is calculated in a
DATA step by dividing the raw weight by its mean:

DATA DEBT;
SET SASUSER.DEBTONLY;
NORMWT=BNBWT1/110.7860;

RUN;

Raw weighted descriptive analyses and relative weighted parameter estimates in
models can be generated using the WEIGHT subcommand in SAS. For raw
weighted analyses the user would use BNBWT1:

PROC MEANS MEAN STDDEV STDERR N;
VAR DEBT1000 FEMALE NONWHITE BATIME2 TOTCOST FTFY;
WEIGHT BNBWT1;

RUN;

For relative weighted analyses, the user would use the newly created NORMWT
variable (see above):

PROC MEANS MEAN STDDEV STDERR N;
VAR DEBT1000 FEMALE NONWHITE BATIME2 TOTCOST FTFY;
WEIGHT NORMWT;

RUN;
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To account for the complex sample design, the user needs to recompute these
estimates using the PROC SURVEYMEANS routine. This requires knowledge
of any strata and clusters that exist in the data. The Baccalaureate & Beyond
data set contains a variable for each of these dimensions: BNBSTRAT for the
strata and SCHLID for the clusters. Again, the weight is applied using the
WEIGHT subcommand:

PROC SURVEYMEANS MEAN STD STDERR SUMWGT;
CLUSTER SCHLID;
VAR DEBT1000 FEMALE NONWHITE BATIME2 TOTCOST FTFY;
STRATA BNBSTRAT;
WEIGHT NORMWT;

RUN;

The PROC SURVEYREG routine in SAS uses the Taylor Linearization method
to provide the correct standard error estimates for regression analyses. The /
DEFF option on the MODEL statement provides design effect values for each of
the parameters. Again, the weight is applied using the WEIGHT subcommand:

PROC SURVEYREG;
CLUSTER SCHLID;
MODEL DEBT1000= FEMALE NONWHITE BATIME2 TOTCOST FTFY /
DEFF;

STRATA BNBSTRAT ;
WEIGHT NORMWT;

RUN;

SAS’s PROC MIXED routine allows the user to partition the variance in the
outcome variable into its within- and between-unit components. The intracluster
correlation is calculated using these values. The METHOD = ML option on the
PROC MIXED statement specifies maximum likelihood estimation and the
WEIGHT subcommand applies the relative weight NORMWT:

PROC MIXED METHOD=ML;
CLASS SCHLID;
MODEL DEBT1000=;
RANDOM SCHLID ;
WEIGHT NORMWT;

RUN;
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APPENDIX B. EXAMPLES OF SPSS CODE USED

To compute the relative weight (NORMWT) one first needs to find the mean
value of the raw weight (BNBWT1) for the sample being used. The user needs
to make sure that no weight is being used when calculating this mean:

WEIGHT OFF.
DESCRIBE BNBWT1.

This yields a mean value of 110.7860. The relative weight is calculated by
dividing the raw weight by its mean:

WEIGHT OFF.
COMPUTE NORMWT=BNBWT1/110.7860.

Raw weighted descriptive analyses and relative weighted parameter estimates in
models can be generated using the WEIGHT BY statement in SPSS. For raw
weighted analyses the user would use BNBWT1:

WEIGHT BY BNBWT1.
DESCRIBE DEBT1000 FEMALE NONWHITE BATIME TOTCOST FTFY.

For relative weighted analyses, the user would use the newly created NORMWT
variable (see above):

WEIGHT BY NORMWT.
DESCRIBE DEBT1000 FEMALE NONWHITE BATIME TOTCOST FTFY.

Caution: Note that in SPSS the user needs to invoke the WEIGHT BY statement
only once. All subsequent analyses will be conducted applying the specified
weight until the WEIGHT OFF statement is run.

To compute the design effect adjusted weight (DEFFWT), the user needs to
divide the relative weight (NORMWT) by a known value for the survey design
effect (again, this value can be obtained through the methodology report accom-
panying most complex survey data sets or, for most NCES data sets can be
generated using the Data Analysis System software distributed by NCES (see
footnote X in text).

WEIGHT OFF.
COMPUTE DEFFWT=NORMWT/1.96.



538 THOMAS AND HECK

The design effect adjusted weight can then be applied in the same fashion as
the other weights:

WEIGHT BY DEFFWT.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/DEPENDENT totdebt
/METHOD=ENTER FEMALE NONWHITE BATIME2 TOTCOSTA FTFY.

The VARCOMP procedure in SPSS allows the user to partition the variance in
the outcome variable into its within- and between-unit components. The in-
tracluster correlation is calculated using these values. The METHOD = ML op-
tion specifies maximum likelihood estimation:

WEIGHT BY NORMWT.
VARCOMP
DEBT1000 BY SCHLID
/RANDOM = SCHLID
/METHOD = ML.

NOTES

1. The Baccalaureate & Beyond Study tracks the experiences of a cohort of college graduates who
received a bachelor’s degree during the 1992–1993 academic year. The B&B:93/94 was drawn
from the much larger 1993 National Postsecondary Student Aid Study (NPSAS:93). The NP-
SAS:93 sample, while representative and statistically accurate, was not a simple random sample
(NCES, 1995).

2. Conceptually, all analyses can be considered as weighted. An unweighted analysis is actually
one in which all observations are weighted equally with a weight of 1.0.

3. In the interest of making these points as accessible as possible, we have included in Appendices
A and B examples of the actual SAS and SPSS code used to produce the results reported
throughout the article.

4. Recall that standard error decreases as a function of sample size.
5. While SAS version 8 computes the standard error using the correct sample size, basic variance

estimates remain problematic and should be checked carefully before using.
6. The SAS VARCOMP procedure does not allow the use of weights. However, weighted variance

components can be calculated in SAS using the PROC MIXED routine.
7. This exercise is largely demonstrative at this point, and, as will become clear in a subsequent

section, is usually only conducted when there is little information known about the magnitude
of potential bias resulting from the clustering of observations.

8. This method goes by several different names in the literature, including the linearization
method, the delta method (Kalton, 1983), and the propagation of variance (Kish, 1965).

9. While SAS version 8 incorporates these new procedures into its base program, SPSS version
10 relies on an interface with a version of the WesVar program, thus still requiring purchase
of this add-on and programming knowledge of an additional piece of software.
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10. This SAS procedure is limited to standard regression models. Some of the more developed
complex sample software packages such as SUDAAN and WesVar provide the researcher with
a much wider variety of routines (e.g., multinomial logistic regression for ordinal and binary
data, proportional hazards models, etc.).

11. While NCES’s DAS software provides a convenient way to obtain design effect values, the
reader is cautioned that these values are abnormally conservative. Those interested in this ap-
proach are advised to contact the NCES staff for further information.

12. This is an instance when knowledge of the ICC is instrumental. In such instances, the researcher
can calculate the ICC in a fashion similar to that presented in an earlier section of this article.
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